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In the first part of the experiment, a thermocouple was used to explore the first-order transient

response of heat transfer. First, the thermocouple was connected to the LabQuest unit used to

collect and store the temperature data. After the thermocouple was tested, one Styrofoam cup was

filled with warm water from the lab sink and one was filled with ice water. The thermocouple

was then set in the warm water until the temperature stabilized. Subsequently, a 10-second data

collection period was started and the thermocouple was quickly transferred to the cold water. This

represented the cooling process of the thermocouple. A heating trial was also conducted in which

the thermocouple started in the cold water and was transferred to the warm water. The recorded

transient temperature as a function of time can be seen in Figure 1, below.

Figure 1: The transient temperature, T , plotted as a function of time, t.
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In order to find the time constants for the heating a cooling processes, the transient temperature

data had to be linearized. Following a derivation from an explicit solution from an energy balance

equation, the data was linearized using the equation

y(t) = ln
✓

T (t)�T•
T0 �T•

◆
(1)

where y(t) was the transformed data, T (t) was temperature as a function of time, T• was the steady-

state temperature of the surrounding fluid, and T0 was the initial temperature of the surrounding

fluid. The data was then cropped to only include the linear portion of the data which reflects

the exponential portion of the original data. Linear curve fits were then applied to both cropped

portions of data and plotted on the same plot as seen in Figure 2, below.

Figure 2: The linearized temperature data, y(t), plotted as a function of time, t. The dashed lines
represent linear fits for their respective data sets when the temperature was changing

exponentially.

From the linear lines of best fit, the time constant data could be extracted from the slope as the

equation for the lines of best fit was
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y(t) =
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where y(t) was the transformed data, t was the time constant, and t was time. The time constant

for heating was tH = 0.2239 s and tC = 0.2183 s for cooling as also seen in Table 1, below. These

values were very similar which aligns with what one would expect. The time constant is roughly

the time is takes for the thermocouple to get 63% of the way to the steady-state temperature. Given

that the absolute value of the difference in temperatures for both the heating and cooling processes

were very similar, I would expect the thermocouple to take a similar amount of time to heat and

cool off given that all of its attributes remain the same. Therefore, it makes sense that the time

constant values are similar.

In the second part of the lab, a bat was used to explore the attributes of a damped harmonic oscilla-

tor. Since the bat experiences some elastic deformation when the ball impacts the barrel and it has

mass, it vibrates and is disturbed from equilibrium. This means it can be modeled as a harmonic

oscillator per source [1]. However, the fact that a person holds the bat in their hand results in a

dampening of the vibrations. Given this additional characteristic, the bat is a good model of a

damped harmonic oscillator. While both single and double walled bats were used in the experi-

ment, this specific data that was analyzed was only from the double-walled bat.

Four strain gauges were attached to the barrel of the bat to measure the vibrations. These strain

gauges were connected to an amplifier that ultimately outputted the data to an oscilloscope from

which the data was saved. While the data was collected as a voltage, this directly related to the

displacement of the bat. The CSV file was cleaned of its headers so the data could be loaded into

the provided fast Fourier transform (FTT) code. Once this code was executed, the spectral density

vs. frequency plot was used to identify the ringing frequency, wd . The ringing frequency was

identified as the frequency at which spectral density peaked which was determined to be 154.8 Hz.

The relevant plot can be seen in Figure 3, below.
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Figure 3: The spectral density, y( f ), plotted as a function of frequency, f .

Once the ringing frequency was determined, the value was used in the phase vs. frequency plot

produced by the FTT code to find the phase (in rad). The decay constant, l , was solved for using

equation

l =
ln
⇣

y1
y2

⌘

Dt
(3)

where l was the decay constant, y1 and y2 were two peak values from the strain gauge output vs

time graph, and Dt was the time step between the y1 and y2 values. Once the decay constant was

calculated, the theoretical ringing behavior was predicted using the equation

ybat(t) = Ae
�l t sin(wdt +f) (4)

where ybat(t) was the strain gauge output, wd was the ringing frequency, l was the decay constant,

A was the relative constant amplitude, and f was the phase. Eq. 4 was used to create the theoretical

curve in Figure 4, below. The actual strain gauge output is also plotted in Figure 4.
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Figure 4: The strain gauge output from the bat, y(t), plotted as a function of time, t. The
theoretical curve for the strain was also calculated and plotted.

Finally, the dampening ratio was calculated using the equation

xB =
l 2

l 2 +w2
d

(5)

where xB was the dampening ratio, wd was the ringing frequency, and l was the decay constant.

Since 4 exhibits an curve indicative of an under-damped oscillator per source [2], the dampening

ratio was expected to be less than 1. As can be seen in Table 1 below, this is the case. Table 1 also

includes important values from the rest of the experiment.

Table 1: The values relevant to the analysis of the First-Order Transient Response and dampened
harmonic oscillator (double-walled bat).

tH (s) tC (s) Ringing Frequency, fd (Hz) Damping Ratio, xB

0.2239 0.2183 154.8 0.001476

Overall, the theoretical and actual output curves are relatively similar which suggests the data
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collection and data analysis was largely successful. However, some errors including the slow

sampling rate of the thermocouple and the inconsistency of bat swings could be resolved to create

better results.
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