University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

Experiment A7
Microcontrollers
Procedure

Deliverables: checked lab notebook, demonstration of working device to Lab TA
Recommended Reading: Section 6.4; Chapter 18 of the textbook
You do NOT have to write a tech memo for this lab. Just make sure the TA fills out the score

sheet as you complete each part of the lab. Each item on the score sheet must be completed
before the end of lab for you to receive credit for it.

Overview

A microcontroller is a rudimentary computer packed into a small IC that can be programmed
to automate various tasks. In this lab, you will use an Arduino UNO microcontroller to read
the voltage output from the thermistor voltage divider circuit used in A3, calculate the

temperature, display it on a digital screen, and sound an alarm if the temperature is too high.

Arduino UNO Microcontroller

RESET

Breadboard +5V

H oo PR

Pprenn =
GEGRES 5§
RN 1 901V |

EETE

oo coooo coocoo oo
oo coocoo cococoo oo
coocoo cococoo
oo CE-N-N-N- coocoo oo

oo coooo0 cococoo co /\r]é]l()g; Ir]F)lJtE; [)ig}itéal I/(j
sall mmnan aanne o A0 - A5 0-13

Figure 1 — The Arduino UNO Microcontroller works in tandem with breadboard.

The Arduino UNO is an inexpensive microcontroller commonly used by hobbyists and engineering
students. Shown in Figure 1, the UNO is connected to a breadboard where various sensors and
circuits can be implemented (i.e. a thermistor in a voltage divider circuit). Here are a few of the
more salient features of the UNO.

e Analog inputs - The UNO has a 10-bit analog-to-digital converter (A/D) that can read up
to six different analog voltages into digital memory. Voltages between 0V and 5V are
mapped to integer values between 0 and 1023, respectively.

A7 — Microcontrollers 1 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

¢ Digital input/outputs - The UNO has 14 different digital input/outputs (I/O). These pins
always output a voltage of 0OV (LOW) or +5V (HIGH). Pins marked with a ‘~’ can output a
500Hz pulse width modulation (PWM) square wave. Varying the duty cycle (% of time the
+5V is ON) creates an average voltage that can be treated as an analog output.

e +5V DC Power — This pin outputs a constant +5V, which can be connected to a breadboard
to power various sensors and peripherals. (It is only capable of producing a very small
amount of current, so beware of voltage droop!)

e USB Connection — Digital data is exchanged between the UNO and lab computer via the
USB serial connection. The USB cable also provides the +5V power to the UNO.

Part I: Controlling the Brightness of an LED
Background

In the first part of this lab, you will use a potentiometer as a knob to control the brightness of an
LED. A potentiometer is a variable resistor whose value can be changed by turning a knob.

Shown in Figure 2 below, the relative resistance between A and B and between B and C changes as
the knob is turned. The potentiometer is essentially a variable voltage divider. Connecting +5V to
terminal A and OV (ground) to terminal C creates a variables voltage source on terminal B.

Resistive Arc Side View Pin-out

+5V A (Top View)
/ Shaft R,
B Vout
R>
C
A B C = A BC

Figure 2 — (Left) A schematic representing the operation of a potentiometer. (Center) The
potentiometer used as a voltage divider. (Right) The potentiometer has three pins A, B, and C. Pin
B is sometimes called the “wiper”.

The potentiometer can be used as a variable voltage source. However, it is not capable of
producing large currents, because the resistances of the potentiometer are fairly large, typically
over 1000 Ohms. Thus, the potentiometer cannot be used to directly control the brightness of the
LED. To overcome this, we will use the Arduino microcontroller as a digital amplifier. Shown in
Figure 3, the analog input pin A0 of the Arduino reads the voltage from the potentiometer and
stores it in memory as a 10-bit integer between 0 and 1023. This 10-bit integer is then linearly
mapped to an 8-bit integer between 0 and 255, which controls the duty cycle of the PWM signal
from pin 9. (In the code, the “analogWrite” function maps the integer 0 to 0% duty cycle, and 255
to 100% duty cycle.) The LED is connected to this digital output, and its brightness can be
logically traced back to the angle of the potentiometer knob.

A7 — Microcontrollers 2 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

)
=
>
3
[-%
=
ol
3
04

Y

“flags” for measuring| . .
potentiometer X
voltage with DMM |« «

Figure 3 — The potentiometer and LED are mounted in the breadboard and connected to the
Arduino.

Procedure
1. Close any Arduino IDE windows that are open on the lab computer.

2. Connect the Arduino UNO to the lab computer via the USB cable. You should see a green
LED light up on the Arduino.

3. Use red and black jumper wires to connect the +5V and GND pins on the Arduino to the
vertical bus lines on the breadboard, as shown in Fig. 1. Use the orange handheld DMM to
verify that it is providing +5V of power.

4. Before you plug the potentiometer into the breadboard, connect the DMM to pins A and B, and
measure the resistance. Turn the knob, and you should see the resistance change. Record the
maximum and minimum resistance in your lab notebook. Repeat this for pins B and C.

5. Insert the potentiometer into the breadboard near the top, as shown in Fig. 3. Make the
following connections:

a. Pin A on potentiometer — +5V
b. Pin B on potentiometer — Analog input A0 on the Arduino
c. Pin C on potentiometer — OV (GND)

6. Use the DMM to measure the output voltage from the potentiometer between pin B and
ground. Turn the knob, and the voltage should change accordingly.

A7 — Microcontrollers 3 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

Pro-tip: Insert a jumper wire into the rows of the breadboard where you wish to connect the DMM
mini-grabbers. (These wires are sometimes called “flags”.) DO NOT try to grab onto the pins of
the potentiometer or the base of any wire already in the breadboard.

7.

10.

11.

12.
13.
14.

15.

16.

17.

18.

19.

Connect the LED and a 220Q2 in series between digital output pin 9 and ground, as shown in
Fig. 3. Make sure that the shorter “cathode” wire of the LED is on the ground (negative) side
of the circuit.

Download the A7 “Part I Template” code template from the lab webpage. Right-click the link
> “Save link as...”, and save the code with an intelligent file name (i.e.

“A7 potentiometer yourName.ino”). The software will want to create a folder with the
filename. This is normal; click OK.

Read the comments and replace the *** in the beginning with the correct pin numbers for the
analog input from the potentiometer and digital output driving the LED (i.e., “A0” and “9”).

In the Arduino IDE software, go to “Tools” > “Board” and make sure either
“Arduino/Genuino” or “Arduino UNO” is selected.

In the Arduino IDE software, go to “Tools” > “Port” and select the COM port that says
“(Arduino/Genuino Uno)” next to it.

Click the check mark at the top of the Arduino program to check the code for errors.
Press the arrow button to compile the program and send it to the Arduino.

Go to “Tools” > “Serial Monitor” (or press “Ctrl + Shift + M”) to view the output from the
“Serial.print()” commands at the bottom of the screen. You should see an integer between 0
and 1023 corresponding to the potentiometer angle (or voltage) continuously printed. (Make
sure the Baud rate is set to 9600.)

Turn the knob. The printed integer values should change, as well as the brightness of the LED.
Set the knob, so that the integer is about 500 and the voltage on the DMM is around 2.5V.

Use the oscilloscope to measure the PWM signal that is driving the LED. Connect the black
grabber to the ground side of the LED and the red grabber to the signal side of the resistor.
Press the “Autoset” button at the top of the oscilloscope. You should see a square wave.

Turn the knob, and observe how the duty cycle of the PWM signal changes on the oscilloscope,
and how it affects the average brightness of the LED.

Demonstrate the working system to the TA or lab instructor, so you can be awarded
points on your score sheet.

Remove the LED and resistor. Leave the potentiometer plugged into the breadboard for Part
IV.

A7 — Microcontrollers 4 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

Part II: Measuring Temperature
Procedure

You will now construct the thermistor voltage divider circuit from the A3 calibration lab. The
Arduino will read the analog voltage V. from the transducer and use it to calculate the
temperature via the voltage divider and Steinhart equations.

Important: You will use the Arduino to power the circuit on the breadboard. Do NOT turn on the
breadboard.

1. Use the handheld DMM to verify that the thermistor works. It should have a resistance around
10kQ at room temperature. The resistance should decrease when it is warmed up in your hand,
because it has a negative temperature coefficient (NTC).

2. Take a 4.7k resistor out of its bin. Measure its resistance with the orange handheld DMM.
Record the measured value for R in your lab notebook.

V,, = +5V

NTC /
Thermistor <§> Rs

out

2 R,=4.7kQ

Figure 4 — A thermistor is wired up in a voltage divider circuit.

3. On the far end of the breadboard, construct the thermistor voltage divider circuit shown in Fig.
4 somewhere near the center of the breadboard. Test the circuit by measuring Vo, relative to
ground. The voltage Vour should increase when you warm up the thermistor in your hand.

4. Use a long jumper wire to connect Vou to the Al analog input on the Arduino. The Al analog
input will read the voltage into the Arduino’s memory as a 10-bit integer.

5. Download the A7 “Thermistor Template” code template from the lab webpage. Right-click the
link > “Save link as...”, and save the code with an intelligent file name (i.e.
“A7 thermistor yourName.ino”). The software will want to create a folder with the filename.
This is normal; click OK.

A7 — Microcontrollers 5 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

10.

11.

12.

Read the comments and fill in the missing values for the calibration constants 4 = 0.00335 K*!
and B = 0.00029 K-! and the measured resistance R>. (Use the calibration constants you
determined from the 2-point calibration in A3.)

In the Arduino IDE software, go to “Tools” > “Port” and select the COM port that says
“(Arduino/Genuino Uno)” next to it.

Click the check mark at the top of the Arduino program to check the code for errors.
Press the arrow button to compile the program and send it to the Arduino.

Go to “Tools” > “Serial Monitor” (or press “Ctrl + Shift + M”) to view the output from the
“Serial.print()” commands at the bottom of the screen. You should see the measured
temperature printed. Hold the thermistor tip in your hand. Does the printed temperature seem
reasonable? How close is it to the temperature you reported in you A3 tech memo?

Demonstrate the working system to the TA or lab instructor, so you can be awarded
points on your score sheet.

Leave the Thermistor circuit intact. You will need it for the next part.

Part III: Temperature Alarm
You will now use an electronic buzzer to give an audible warning when the measured temperature
is above a certain threshold.

Procedure

1.

5.

6.

On the other far end of the breadboard, wire up the electronic buzzer. Connect the + pin on the
buzzer to digital pin 4 on the Arduino. Connect the other buzzer pin to ground.

Download the “A7 Chirp” code template from the lab webpage, and open it in the Arduino IDE
software. Save it, compile it, and send it to the Arduino, as you did in the previous parts.

You should hear it emit a chirp every 2 seconds. After you verify that it works, disconnect one
of the wires to the buzzer, so it doesn’t drive everyone nuts with constant beeping.

Create a program that measures the temperature, uses an if-statement to check if the
temperature is above 302 K, then emits a short chirp to warn the user that the temperature is too
high.

a. Merge the A7 Chirp code with your previous temperature measurement code. Save it with
a new file name.

b. Note that an Arduino code can have only one setup{} section and only one void loop{}
section.

c. The chirp should only be 100 ms long, with a 1000 ms pause afterward, similar to the
original chirp code. Note that the thermistor code already contains a 1000 ms delay.

d. The code should still print the measured temperature to the serial monitor.

Demonstrate the working system to the TA or lab instructor, so you can be awarded
points on your score sheet.

Leave the alarm and thermistor circuits intact. You will need them for the subsequent parts.

A7 — Microcontrollers 6 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

A7 — Microcontrollers 7 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

Part IV: Design Challenge 1

Combine Parts I and III to create a system where the threshold temperature can be adjusted by
turning the potentiometer. That is, the threshold temperature for tripping the alarm is no longer
fixed at 302K, rather it can be adjusted by turning the knob. The system must have the following
features:

e Splice together the codes from the previous parts and save it as a new file. The new code
should have a section of variable declaration, a single setup{} section, and a single void
loop() {} section.

e Use analogRead() to read in the potentiometer voltage. Map the 10-bit potentiometer
reading to a the threshold temperature, such that turning the knob will adjust the threshold
temperature between 295 to 310K.

e Use serial.print() and serial.println() to print the threshold temperature and measured
temperature. Both should be printed side-by-side on the same new line for each iteration,
formatted as “Temp: *value*”, “Alarm: *value*”.

Demonstrate the working system to the lab instructor or TA to receive points on your score sheet.

Part V: LCD Display — Hello World!
You will now implement an LCD display and test it by printing a simple “Hello World!” message.

fritzing

Figure 5 — A backlit LCD display is plugged into the breadboard and connected to the Arduino.
The potentiometer knob on the left side of the circuit is used adjust the brightness of the screen.

A7 — Microcontrollers 8 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

Procedure

1.

Close the serial monitor window, and unplug the USB cable from the computer to power down
the Arduino.

Carefully plug the LCD display and a second potentiometer into the breadboard, as shown in
Fig. 5. Relocate the alarm circuit, if you need more room on the breadboard.

Make the following connections with the LCD display. Try to use the same color jumper
cables shown in Fig. 5.

VSS — GND on breadboard
VDD — +5V on breadboard

o ®

V0 — Middle pin on potentiometer

a o

RS — Digital pin 7 on Arduino

RW — GND on breadboard

E — Digital pin 8 on Arduino

DO, D1, D2, and D3 are NOT connected to anything

= @ oo

D4 — Digital pin 9 on Arduino

—

D5 — Digital pin 10 on Arduino
j. D6 — Digital pin 11 on Arduino
k. D7 — Digital pin 12 on Arduino
l. A — +5V on breadboard

m. K — GND on breadboard

Connect the left pin of the second potentiometer to GND and the right pin to +5V, as shown in
Fig. 5.

When you are confident that the electrical connections are all correct, plug the USB cable back
into the computer to power up the circuit.

Download the A7 “Hello World!” code template from the lab webpage, and open it in the
Arduino IDE software. Save it, compile it, and send it to the Arduino, as you did in the
previous parts.

Turn the second potentiometer knob to adjust the screen brightness. You should see a message
displayed on the screen. (If the screen is blank, try wiggling the potentiometer so it gets a
better connection to the breadboard.)

Demonstrate the working system to the TA or lab instructor, so you can be awarded
points on your score sheet.

Leave the circuit intact for the next part of the lab.

A7 — Microcontrollers 9 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

Part VI: Design Challenge 2

Combine the subsystems to create a complex human-machine interface that displays the
temperature measured with the thermistor and the threshold temperature set by the potentiometer.
This is similar to the previous design challenge except the measured temperature and alarm
threshold will be displayed on the LCD screen.

e Use led.print() and lcd.setCursor() to print the threshold temperature and measured
temperature with units on separate rows of the LCD, formatted as

“Temp: *value*”

“Alarm: *value*”.

e The buzzer should chirp once per second if the measured temperature is above the
threshold.

When you have this working, demonstrate it to the TA or lab instructor to receive credit on the
score sheet.

Clean-up
To receive full credit, you must return the lab bench to its initial state:

e Disassemble your circuit. Return the resistors to the correct bin. Place the wires,
potentiometer, LED, breadboard, alarm, and LCD display back in the plastic bag.

e Disconnect the USB cable from the computer and Arduino.

Data Analysis and Deliverables

You do NOT have to write a tech memo for this lab. Just make sure the TA or lab instructor fills
out the score sheet as you complete each part of the lab.

A7 — Microcontrollers 10 Last Revision: 12/24/25

University of Notre Dame Aerospace and Mechanical Engineering
AME 21216: Lab I Spring 2026

Appendix A

Equipment
e Bag containing:
Small breadboard
Jumper wires with breadboard pins
Push button
LEDs
2 Small Potentiometers w/ breadboard pins, 10k, blue
o LCD Display (from Elegoo kit)
e 10k Vishay NTC thermistor NTCLE413E213F102L (Digikey part # BC2647-ND, black
heat shrink on pins)
OR
e 4.7k Vishay NTC thermistor NTCLE400E3472H (Digikey part # BC2466-ND, white heat
shrink on pins)
Arduino UNO Microcontroller
12” jumper wires with male pins
6ft USB cable
Breadboard
Extech Handheld Digital Multimeter
o One red banana-to-banana cable
o One black banana-to-grabber cable

O O O O O

A7 — Microcontrollers 11 Last Revision: 12/24/25

University of Notre Dame
AME 21216: Lab I

Aerospace and Mechanical Engineering
Spring 2026

C4_PID_controller

int PWM = 9;

int ThermistorPin = 0;
int Vo;

int dt = 500;
int t = 0;

int Q;

float Ts = 315;
float kp = 16;
float kI = 2;
float kD = 31;
float R2 = 4700;
float I = 0;

float Tprev=300;
float logR2, Rs, T, D;

Appendix B

Variable
Declaration
and
Initialization

float A = 3.354e-03, B = 2.57e-04, C = 2.62e-06;

// the PWM pin the MOSFET gate is attd

void setup() {
Serial.begin(9600);
pinMode(PWM, OUTPUT);
}

Setup - designate I/O
pins, set Baud rate

void loop() {

Vo

Il

analogRead(ThermistorPin);

Rs = R2 * (1023.0 / (float)Vo - 1.0);
logR2 = 10g(Rs/10000);
T=(1.0/ (A + B*¥logR2 + C*logR2*1ogR2));

Main
Loop

Figure 7 — The basic structure of a simple Arduino code or “sketch” begins with variable
declarations, followed by a single setup() section, followed by a main loop that repeats the same

sequence of instructions ad infinitum.

A7 — Microcontrollers

12

Last Revision: 12/24/25

